Pool Heat Pump Size & Quote Calculator
Find the Perfect Pool Heating Solution
Use our free Pool Heat Pump Size & Quote Calculator to determine the right size for your pool. Submit your results, and we’ll connect you with trusted installers in your area. Your browser saves your progress, so you can return anytime to complete or adjust your calculations.
Tab 1: Situational Details
Enter your pool’s water surface area and volume. Double-check your calculations using both surface area and volume estimates to ensure accuracy (within 10%). Identify any external factors (e.g., shading or wind exposure) that might impact pool heat loss.
Define your desired heating season, including pool temperature and duration. This tab provides an accurate estimate of your first-year running costs (excluding servicing).
Tab 2: Capacity Requirements
Adjust heat pump recommendations to fit your preferences, such as extended running times or faster heat-up times. Provide your contact details and answer a few additional questions to help installers create a customized quote for your pool.
* Use a time and area average for shading. For example, if half the
pool is shaded for half the day, set the shading factor to 25%. For a
pool shaded all day, set it to 50%.
Notes on Heat Pump and Gas Heater Cost Predictions
Please be aware, compared to the industry standard PoolHeat (V 5.10.9) program, our calculator predicts lower year-round heating costs for heat pumps for the capitals Hobart, Canberra and Adelaide by 15% and Melbourne by 10%. To our knowledge, PoolHeat does not use a humidity corrective factor for the heat pump calculations, while our calculator corrects for high humidity which can improve GOP factors. This calculator also predicts slightly lower auxiliary heating costs overall possibility due to the lower wind speeds used, as the calculator incorporates recent work on 30-year wind speed climate trends by CSIRO.
Assumptions and Data Sources Used by this Calculator
- This calculator performs full heat loss/gain balance calculations similar to AS 3634-1989 to predict pool temperatures. It uses literature updated evaporation, convection, and radiation heat loss factors. Where there is debate as to the exact magnitude of the loss factor in the literature, we use consensus average values. Predicted pool temperatures were validated by comparing to AS 3634-1989 and PoolHeat program V 5.10.9 programmed by Prof. Graham Morrison.
- The predicted solar boosted pool temperatures given by the calculator were triple validated by comparing to experimental values given in: 1) the American SRCC solar collector database real-world efficiency testing reports for OKU collectors: http://www.solar-rating.org 2) "Testing of Solar Swimming Pool Heaters", Phase 1, by K.I. Guthrie, Victorian Solar Energy Council, report 237-P2/2/84-KG, September, 1984. Implemented in the solar simulation PoolHeat program V 5.10.9. 3) Czarnecki J.T. Swimming Pool Heating by Solar Energy , CSIRO Division of Mechanical Engineering, Technical Report No.TR19, 1978.
- Solar collector efficiency scaling factors for different roofs were taken and fitted to data supplied in "Testing of Solar Swimming Pool Heaters", Phase 1, by K.I. Guthrie, Victorian Solar Energy Council, report 237-P2/2/84-KG, September, 1984.
- The calculator performs a correction for East or West mounted solar collectors (collectors mounted on west facing roofs get the benefit of substantially warmer air and roof temperatures). 3pm and 9am average air temperatures and wind velocities taken from http://www.bom.gov.au/climate/data/ were used in these corrections, assuming a typical unglazed collector efficiency curve.
- Evaporation, convection, radiation loss and light transmission scaling coefficients for pool blankets were fitted to reproduce blanket covered pool temperature data given by Czarnecki J.T. Swimming Pool Heating by Solar Energy , CSIRO Division of Mechanical Engineering, Technical Report No.TR19, 1978. (Adjusted for the different weather data used in the Czarnecki work). With a mean absolute error in pool temps of 0.2°C.
- Minimum acceptable pool temperatures were set around 20°C, while desired temperatures were about 5°C higher. Source: Sheridan, N.R. " The Heating of Swimming Pools", Solar Research Notes No. 4, (1972) University of Queensland. However, this calculator adjusts these valves slightly higher especially for modern times and northern states.
- Gas boiler efficiency, source: http://www.energyrating.gov.au
- Pool heat pump efficiencies are taken from all the actively manufactured units on the US AHRI Certification Directory Database (as of Nov 2018, out of manufacture unit data were discarded) source: https://www.ahridirectory.org
- Pool heat pump manufacturer specified performance data points are defined in the 2014 Standard for Performance Rating of Heat Pump Pool Heaters: ANSI/AHRI Standard 1160. Test points are at HAHH = High Air temperature High Humidity (27°C|80%|27°C), HAMH= High Air temperature Mid Humidity (27°C|63%|27°C), LAMH = Low Air temperature Mid Humidity (10°C|63%|27°C)
- In the calculator heat pump efficiency drop down definitions are as follows: "Least Efficient of the Modern Units" is the average LAMH, HAMH and HAHH specs of the bottom 10 units in the AHRI Database (as sorted by the LAMH value). "Typical Efficiency of Heat Pumps" is an average of the vast majority of units on in AHRI Database (approx. 250 units, excluding the top 10 worst and best). "Use Highest Efficiency Units" is the average specs of the top 10 best units. The drop-down "Older Generation Existing Unit" is approximated as 0.5 COP units less than the worst modern unit in the AHRI Database (caution this number is a guess and should be used with caution, as we could not find data on COP efficiencies of existing old units in Australia).
- A note of caution on the ANSI/AHRI 1160 standard and AHRI listings: it should be kept in mind that as of Nov 2018, this is a voluntary American Standard, as such it's expected that only heat pump manufactures with good COP numbers have the motivation to voluntarily test their units. Hence the COP numbers used in this calculator may very well over-estimate COP efficiencies of "Typical" units sold in Australian. Regardless, the calculator has facilities to specify custom GOP efficiencies.
- Electricity rate, source: https://reneweconomy.com.au/market-insight-residential-electricity-price-series-96026/
- Gas prices rates, source: "Gas Price Trends Review 2017", Version 2.1 March 2018, source: https://www.energy.gov.au/publications/gas-price-trends-review-report
- Average max and min daily temperatures source: 1301.0 - Year Book Australia, 2012
- Average daytime humidity used for the heat pump humidity corrections were taken from http://www.bom.gov.au/climate/data/ using the 3pm data, while the average 9am data was used as the average nighttime humidity.
- Assumed 10-year loss in efficiencies are as follows: ~20% for Heat pumps, ~10% for Gas heaters, ~15% for PoolMasterpro strips, ~5% for OKU pool panels (HDPE is not subject to surface chalking).
- Term definitions given in "Data Used" section:
- Ta = mean monthly dry bulb air temperature (Source: Australian Solar Radiation Data Handbook, ASRDH v2, 1987)
- Ts = mean monthly effective sky temperature (Literature average sky temperature factors are used, corrected using BOM total number of cloudy vs clear days monthly data)
- Tw = mean monthly pool water temperature in an unshaded, uncovered, unheated pool (as calculated)
- V10 = mean monthly wind speed at 10 meters above the ground (m/s) (Source: Australian Solar Radiation Data Handbook, ASRDH v2, 1987, scaled to 95% due to climate change wind speed trends: Troccoil et.al, 2012)
- Pa = mean monthly partial water vapor pressure in the air (kPa) (Source: BOM)
- Qh = mean monthly global solar irradiation on a horizontal plane, (MJ/m2.d) (Source: Australian Solar Radiation Data Handbook, ASRDH v4, 2006)
- Qi = mean monthly total solar irradiation on a north facing plane inclined at the latitude angle (MJ/m2.d) (Source: Australian Solar Radiation Data Handbook, ASRDH v4, 2006)
- Ave_Temp = mean day or night time dry bulb air temperature (Source: 1301.0 - Year Book Australia, 2012)
- Td = desired temperature of the pool, set under the Finer Adjustments tab
- R_Humidity = 3pm or 9am mean relative humidity used for heat pump COP corrections, depending on if the heat pump option is set at "Night Usage" or "Day Usage" (Source: BOM)